FLASH MEMORY

CMOS

$2 \mathrm{M}(256 \mathrm{~K} \times 8)$ BIT

MBM29F002T-90-x-12-x/MBM29F002B-90-X/-12-x

- FEATURES

- Single 5.0 V read, program, and erase

Minimizes system level power requirements

- Compatible with JEDEC-standard commands

Uses same software commands as E2PROMs

- Package option

32-pin TSOP (Package suffix: PFTN-Normal Bend Type, PFTR-Reversed Bend Type)
... MBM29F002T-X/002B-X
32-pin PLCC (Package suffix: PD) ... MBM29F002T-X/002B-X

- Minimum 100,000 write/erase cycles
- High performance

90 ns maximum access time

- Sector erase architecture

One 16 K byte, two 8 K bytes, one 32 K byte, and three 64 K bytes.
Any combination of sectors can be concurrently erased. Also supports full chip erase.

- Boot Code Sector Architecture

T=Top sector
B=Bottom sector

- Embedded Erase ${ }^{\text {TM }}$ Algorithms

Automatically pre-programs and erases the chip or any sector

- Embedded Program ${ }^{\text {TM }}$ Algorithms

Automatically write and verifies data at specified address

- Data Polling and Toggle Bit feature for detection of program or erase cycle completion
- Low Vcc write inhibit $\leq 3.2 \mathrm{~V}$
- Hardware RESET pin

Resets internal state machine to the read mode

- Sector protection

Hardware method disables any combination of sectors from write or erase operations
(Continued)

MBM29F002T-90-X-X12-x/MBM29F002B-90-x-12-x

(Continued)

- Temporary sector unprotection

Hardware method temporarily enables any combination of sectors from write or erase operations

- Erase Suspend/Resume

Suspends the erase operation to allow a read in another sector within the same device

- Extended operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Please refer to "MBM29F002T/002B" in detailed specifications.

PACKAGE

32-pin plastic QFJ (PLCC)
Marking side

(LCC-32P-M02)

GENERAL DESCRIPTION

The MBM29F002T-X/B-X is a 2 M -bit, 5.0 V-only Flash memory organized as 256 K bytes of 8 bits each. The MBM29F002T-X/B-X is offered in a 32-pin TSOP (I) and 32-pin QFJ (PLCC) packages. The device is designed to be programmed in-system with the standard system 5.0 V Vcc supply. A 12.0 V VPP is not required for write or erase operations. The device can also be reprogrammed in standard EPROM programmers.
The standard MBM29F002T-X/B-X offers access times 90 ns and 120 ns , allowing operation of high-speed microprocessors without wait states. To eliminate bus contention the device has separate chip enable (CE), write enable (WE), and output enable ($\overline{\mathrm{OE} \text {) controls. }}$

The MBM29F002T-X/B-X is command set compatible with JEDEC standard E2PROMs. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine which controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the device is similar to reading from 12.0 V Flash or EPROM devices.
The MBM29F002T-X/B-X is programmed by executing the program command sequence. This will invoke the Embedded Program Algorithm which is an internal algorithm that automatically times the program pulse widths and verifies proper cell margin. Typically, each sector can be programmed and verified in about 0.5 seconds. Erase is accomplished by executing the erase command sequence. This will invoke the Embedded Erase Algorithm which is an internal algorithm that automatically preprograms the array if it is not already programmed before executing the erase operation. During erase, the device automatically times the erase pulse widths and verifies proper cell margin.

A sector is typically erased and verified in 1.0 second. (if already completely preprogrammed.)
The device also features a sector erase architecture. The sector mode allows each sector to be erased and reprogrammed without affecting other sectors. The MBM29F002T-X/B-X is erased when shipped from the factory.

The device features single 5.0 V power supply operation for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations. A low Vcc detector automatically inhibits write operations on the loss of power. The end of program or erase is detected by Data Polling of DQ7, by the Toggle Bit feature on DQ6, or the RY/BY pin. Once the end of a program or erase cycle has been completed, the device internally resets to the read mode.

Fujitsu's Flash technology combines years of EPROM and E2PROM experience to produce the highest levels of quality, reliability and cost effectiveness. The MBM29F002T-X/B-X memory electrically erases the entire chip or all bits within a sector simultaneously via Fowler-Nordhiem tunneling. The byte is programmed one byte at a time using the EPROM programming mechanism of hot electron injection.

MBM29F002T-90-x-12-x/MBM29F002B-90-x-12-x

FLEXIBLE SECTOR-ERASE ARCHITECTURE

- One 16 K byte, and two 8 K bytes, one 32 K byte, and three 64 K bytes
- Individual-sector, multiple-sector, or bulk-erase capability
- Individual or multiple-sector protection is user definable.

16K byte	
8K byte	
8K byte	
32K byte	
64K byte	
64K byte	
64K byte	

MBM29F002T-X Sector Architecture

64K byte	
64 K byte	
64K byte	
32 K byte	
8K byte	
8K byte	
16K byte	

MBM29F002B-X Sector Architecture

PRODUCT LINE UP

Part No.	MBM29F002T-X/B-X	
Ordering Part No.	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%$	$-90-\mathrm{X}$
Max. Address Access Time (ns)	90	$-12-\mathrm{X}$
Max. CE Access Time (ns)	90	120
Max. $\overline{\text { OE Access Time (ns) }}$	35	120

CONNECTION DIAGRAMS

LOGIC SYMBOL

Table 1 MBM29F002T-X/B-X Pin Configuration

ORDERING INFORMATION

Industrial Devices

Fujitsu industrial devices are available in several packages. The order number is formed by a combination of:

MBM29F002	

MBM29F002T-90-x/-12-x/MBM29F002B-90-X/-12-x

ABSOLUTE MAXIMUM RATINGS

Storage Temperature

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

Ambient Temperature with Power Applied $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Voltage with Respect to Ground All pins except A9, OE, RESET (Note 1) -2.0 V to +7.0 V
Vcc (Note 1) -2.0 V to +7.0 V
A9, OE, and RESET (Note 2) -2.0 V to +13.5 V

Notes: 1. Minimum DC voltage on input or I/O pins are -0.5 V . During voltage transitions, inputs may negative overshoot $\mathrm{V}_{\text {ss }}$ to -2.0 V for periods of up to 20 ns . Maximum DC voltage on output and I/O pins are Vcc +0.5 V . During voltage transitions, outputs may positive overshoot to $\mathrm{Vcc}+2.0 \mathrm{~V}$ for periods of up to 20 ns .
2. Minimum DC input voltage on $A 9, \overline{O E}$, and RESET pins are -0.5 V . During voltage transitions, $A 9, \overline{O E}$, and RESET pins may negative overshoot V ss to -2.0 V for periods of up to 20 ns . Maximum DC input voltage on $\mathrm{A}_{9}, \overline{\mathrm{OE}}$, and RESET pins are +13.0 V which may positive overshoot to 13.5 V for periods of up to 20 ns .

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING RANGES

Industrial Devices
Ambient Temperature (T_{A}) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Vcc Supply Voltages..4.50 V to +5.50 V
Recommended operating ranges define those limits between which the functionality of the device is guaranteed.
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

MAXIMUM OVERSHOOT

Figure 1 Maximum Negative Overshoot Waveform

Figure 2 Maximum Positive Overshoot Waveform

Note : This waveform is applied for $A_{o}, O E$, and RESET.

Figure 3 Maximum Positive Overshoot Waveform

MBM29F002T-90-x/-12-x/MBM29F002B-90-x/-12-x

DC CHARACTERISTICS

- TTL/NMOS Compatible

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
l L	Input Leakage Current	$\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\text {ss }}$ to $\mathrm{Vcc}, \mathrm{Vcc}=\mathrm{V}_{\text {cc }} \mathrm{Max}$.	-	± 1.0	$\mu \mathrm{A}$
ILo	Output Leakage Current	Vout = $\mathrm{V}_{\text {ss }}$ to V_{cc}, $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Max}$.	-	± 1.0	$\mu \mathrm{A}$
ІІı	A9, OE, RESET Inputs Leakage Current	$\begin{aligned} & \mathrm{V} c \mathrm{cc}^{=} \mathrm{Vcc} \operatorname{Max.} \\ & \mathrm{~A}_{9}, \mathrm{OE}, \operatorname{RESET}=12.5 \mathrm{~V} \end{aligned}$	-	50	$\mu \mathrm{A}$
Icc1	Vcc Active Current (Note 1)	$\overline{C E}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$	-	50	mA
Icca	Vcc Active Current (Note 2)	$\overline{C E}=V_{\text {IL }}, \overline{O E}=\mathrm{V}_{\text {IH }}$	-	80	mA
Icc3	Vcc Current (Standby)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Max}_{\mathrm{I}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{H}}, \\ & \text { RESET }=\mathrm{V}_{\mathrm{H}} \end{aligned}$	-	1.5	mA
Icca	Vcc Current (Standby, Reset)	Vcc $=$ Vcc Max., RESET $=\mathrm{V}_{\mathrm{IL}}$	-	1.5	mA
VIL	Input Low Level	-	-0.5	0.6	V
Vı	Input High Level	-	2.4	$\mathrm{Vcc}+0.5$	V
VID	Voltage for Autoselect and Sector Protection (As, OE, RESET) (Note 3)	$\mathrm{Vcc}=5.0 \mathrm{~V}$	11.5	12.5	V
Vol	Output Low Voltage Level	$\mathrm{loL}=5.8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Min}$.	-	0.45	V
Vон	Output High Voltage Level	$\mathrm{IOH}=-2.5 \mathrm{~mA}, \mathrm{~V} \mathrm{Cc}=\mathrm{Vcc}$ Min.	2.4	-	V
Vıко	Low Vcc Lock-Out Voltage	-	3.2	4.2	V

Notes: 1. The Icc current listed includes both the DC operating current and the frequency dependent component (at 6 MHz).
The frequency component typically is $2 \mathrm{~mA} / \mathrm{MHz}$.
2. Icc active while Embedded Algorithm (program or erase) is in progress.
3. Applicable to sector protection function.

- CMOS Compatible

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
l L	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\text {cc, }} \mathrm{V}_{\text {cc }}=\mathrm{V}_{\mathrm{cc}}$ Max.	-	± 1.0	$\mu \mathrm{A}$
ILo	Output Leakage Current	Vout $=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\text {cc, }} \mathrm{V}_{\text {cc }}=\mathrm{V}_{\text {cc }} \mathrm{Max}$.	-	± 1.0	$\mu \mathrm{A}$
ILIt	A_{9}, OE, RESET Inputs Leakage Current	$\begin{aligned} & V_{c c}=V_{c c} \text { Max. } \\ & A_{9}, \mathrm{OE}, \operatorname{RESET}=12.5 \mathrm{~V} \end{aligned}$	-	50	$\mu \mathrm{A}$
Icc1	Vcc Active Current (Note 1)	$\mathrm{CE}=\mathrm{V}_{\mathrm{IL}}, \mathrm{OE}=\mathrm{V}_{\mathrm{H}}$	-	50	mA
Icc2	Vcc Active Current (Note 2)	$\mathrm{CE}=\mathrm{V}_{\mathrm{IL}}, \mathrm{OE}=\mathrm{V}_{\mathrm{H}}$	-	80	mA
Icc3	Vcc Current (Standby)	```Vcc = Vcc Max., CE = V V, RESET = Vcc }\pm0.3 ```	-	100	$\mu \mathrm{A}$
Icc4	Vcc Current (Standby, Reset)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Vcc} \text { Max., RESET }=\mathrm{Vss} \pm \\ & 0.3 \mathrm{~V} \end{aligned}$	-	100	$\mu \mathrm{A}$
VIL	Input Low Level	-	-0.5	0.6	V
V_{H}	Input High Level	-	$0.7 \times \mathrm{Vcc}$	$\mathrm{Vcc}+0.3$	V
VID	Voltage for Autoselect and Sector Protection (As, OE, RESET) (Note 3)	$\mathrm{Vcc}=5.0 \mathrm{~V}$	11.5	12.5	V
VoL	Output Low Voltage Level	$\mathrm{loL}=5.8 \mathrm{~mA}, \mathrm{Vcc}=\mathrm{Vcc}$ Min.	-	0.45	V
Voh1	Output High Voltage Level	$\mathrm{IOH}=-2.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Min}$.	$0.85 \times \mathrm{Vcc}$	-	V
Voh2		$\mathrm{loh}=-100 \mu \mathrm{~A}, \mathrm{~V}$ cc $=\mathrm{Vcc}$ Min.	Vcc-0.4	-	V
V Lко	Low Vcc Lock-Out Voltage	-	3.2	4.2	V

Notes: 1. The Icc current listed includes both the DC operating current and the frequency dependent component (at 6 MHz).
The frequency component typically is $2 \mathrm{~mA} / \mathrm{MHz}$.
2. Icc active while Embedded Algorithm (program or erase) is in progress.
3. Applicable to sector protection function.

AC CHARACTERISTICS

- Read Only Operations Characteristics

Parameter Symbols		Description	Test Setup		$\begin{aligned} & -90-X \\ & \text { (Note) } \end{aligned}$	$\begin{gathered} -12-X \\ \text { (Note) } \end{gathered}$	Unit
JEDEC	Standard						
tavav	trc	Read Cycle Time	-	Min.	90	120	ns
tavav	tacc	Address to Output Delay	$\begin{aligned} & C E=V_{\mathrm{IL}} \\ & \mathrm{OE}=V_{\mathrm{IL}} \end{aligned}$	Max.	90	120	ns
telov	tce	Chip Enable to Output Delay	$\overline{O E}=V_{\text {IL }}$	Max.	90	120	ns
tglov	toe	Output Enable to Output Delay	-	Max.	35	50	ns
tehaz	tof	Chip Enable to Output High-Z	-	Max.	20	30	ns
tghaz	toF	Output Enable to Output High-Z	-	Max.	20	30	ns
taxax	toн	Output Hold Time From Addresses, CE or $\overline{O E}$, Whichever Occurs First	-	Min.	0	0	ns
-	treadr	RESET Pin Low to Read Mode	-	Max.	20	20	$\mu \mathrm{s}$

Notes: Test Conditions:
Output Load: 1 TTL gate and 100 pF Input rise and fall times: 20 ns Input pulse levels: 0.45 V to 2.4 V
Timing measurement reference level
Input: 0.8 V and 2.0 V
Output: 0.8 V and 2.0 V

Note: $\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$ including jig capacitance
Figure 4 Test Conditions

- Write/Erase/Program Operations

Alternate WE Controlled Writes

Parameter Symbols		Description			-90-X	-12-X	Unit
JEDEC	Standard						
tavav	twc	Write Cycle Time		Min.	90	120	ns
tavwL	$\mathrm{tas}^{\text {a }}$	Address Setup Time		Min.	0	0	ns
twlax	taH	Address Hold Time		Min.	45	50	ns
tovw	tos	Data Setup Time		Min.	45	50	ns
twhdx	toh	Data Hold Time		Min.	0	0	ns
-	toes	Output Enable Setup Time		Min.	0	0	ns
-	tоен	Output Enable Hold Time	Read	Min.	0	0	ns
			Toggle and Data Polling	Min.	10	10	ns
tghwL	tghwi	Read Recover Time Before Write		Min.	0	0	ns
teLw	tcs	CE Setup Time		Min.	0	0	ns
twher	tch	CE Hold Time		Min.	0	0	ns
twLwh	twp	Write Pulse Width		Min.	45	50	ns
twhwL	twpH	Write Pulse Width High		Min.	20	20	ns
twHwH1	twhwH1	Byte Programming Operation		Typ.	8	8	$\mu \mathrm{s}$
twHwH2	twhwH2	Sector Erase Operation (Note 1)		Typ.	1	1	sec
				Max.	15	15	sec
-	tvcs	Vcc Setup Time		Min.	50	50	$\mu \mathrm{s}$
-	tvLht	Voltage Transition Time (Note 2)		Min.	4	4	$\mu \mathrm{s}$
-	twpp	Write Pulse Width (Note 2)		Min.	100	100	$\mu \mathrm{s}$
-	toEsp	OE Setup Time to WE Active (Note 2)		Min.	4	4	$\mu \mathrm{S}$
-	tcsp	CE Setup Time to WE Active (Note 2)		Min.	4	4	$\mu \mathrm{s}$
-	trp	RESET Pulse Width		Min.	500	500	ns

Notes: 1. This does not include the preprogramming time.
2. This timing is for Sector Protection operations.

- Write/Erase/Program Operations Alternate CE Controlled Writes

Parameter Symbols		Description			-90-X	-12-X	Unit
JEDEC	Standard						
tavav	twc	Write Cycle Time		Min.	90	120	ns
tavel	tas	Address Setup Time		Min.	0	0	ns
telax	$\mathrm{taH}^{\text {H }}$	Address Hold Time		Min.	45	50	ns
toveh	tos	Data Setup Time		Min.	45	50	ns
tehdx	tor	Data Hold Time		Min.	0	0	ns
-	toes	Output Enable Setup Time		Min.	0	0	ns
-	tоен	Output Enable Hold Time	Read	Min.	0	0	ns
			Toggle and Data Polling	Min.	10	10	ns
tghel	tghel	Read Recover Time Before Write		Min.	0	0	ns
twlel	tws	WE Setup Time		Min.	0	0	ns
terwh	twh	WE Hold Time		Min.	0	0	ns
teleh	tcp	CE Pulse Width		Min.	45	50	ns
tehel	tcPr	CE Pulse Width High		Min.	20	20	ns
twhwn'	twhwh 1	Byte Programming Operation		Typ.	8	8	$\mu \mathrm{s}$
twHw'2	twhwhz	Sector Erase Operation (Note)		Typ.	1	1	sec
				Max.	15	15	sec
-	tvcs	Vcc Setup Time		Min.	50	50	$\mu \mathrm{s}$
-	trp	RESET Pulse Width		Min.	500	500	ns

Note: This does not include the preprogramming time.

ERASE AND PROGRAMMING PERFORMANCE

Parameter	Limits			Unit	Comments
	Min.	Typ.	Max.		
Sector Erase Time	-	1	15	sec	Excludes 00H programming prior to erasure
Byte Programming Time	-	8	500	$\mu \mathrm{~s}$	Excludes system-level overhead
Chip Programming Time	-	2.1	13	sec	Excludes system-level overhead
Erase/Program Cycle	100,000	-	-	cycles	-

32-PIN TSOP (I) PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Typ.	Max.	Unit
CIN	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0$	7	8	pF
Cout	Output Capacitance	Vout $=0$	8	10	pF
CIN 2	Control Pin Capacitance	$\mathrm{V}_{\mathrm{IN}}=0$	8	10	pF

Note: Test conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$
■ QFJ (PLCC) PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Typ.	Max.	Unit
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0$	7	8	pF
Cout	Output Capacitance	Vout $=0$	8	10	pF
$\mathrm{C}_{\mathrm{IN} 2}$	Control Pin Capacitance	$\mathrm{V}_{\mathrm{IN}}=0$	8	10	pF

Note: Test conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

MBM29F002T-90-x-12-x/MBM29F002B-90-x-12-x

PACKAGE DIMENSIONS

32-pin plastic TSOP (I)

(FPT-32P-M24)

© 1994 FUUITSU LIMITED F32035S-2C-1
Dimensions in mm (inches)

32-pin plastic TSOP (I) (FPT-32P-M25)

© 1997 FUUITSU LIMITED F32036S-2C-2
Dimensions in mm (inches)

MBM29F002T-90-x-12-x/MBM29F002B-90-X-12-X

(Continued)

FUJITSU LIMITED

For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/

Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD \#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/
\section*{F9709}
© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

